Home » c-IAP » (2011) Rab5 GTPase controls chromosome alignment through lamin disassembly and relocation of the NuMA-like protein Mud to the poles during mitosis

(2011) Rab5 GTPase controls chromosome alignment through lamin disassembly and relocation of the NuMA-like protein Mud to the poles during mitosis

(2011) Rab5 GTPase controls chromosome alignment through lamin disassembly and relocation of the NuMA-like protein Mud to the poles during mitosis. connection with nuclear lamina, modulate CENPF localization and levels at centromeres, as a result ensuring appropriate spindle size and kinetochore-microtubule attachment in meiotic oocytes.Ma, R., Hou, X., Zhang, L., Sun, S.-C., Schedl, T., Moley, K., Wang, Q. Rab5a is required for spindle size control and kinetochore-microtubule attachment during meiosis in oocytes. (7) exposed that vesicles positive for the Rab11a modulate an actin network for asymmetric spindle placement in oocytes. Rab5, as the expert regulator of the endocytic trafficking, has been well recognized to involve in membrane tethering and docking (8,C11). Three isoforms of Rab5 (a, b, and c) share 90% of sequence identity yet can be functionally different (12). Of notice, recent findings possess suggested that Rab5 GTPase participates in chromosome congression in and human being mitotic cells (13, 14). However, the potential practical involvement of Rab5 in meiosis has not been addressed yet. In this study, we set out to investigate the part of Rab5a during mouse oocyte meiosis. We found out a novel function of Rab5a-containing vesicles: control of the spindle size and chromosome positioning through modulation of centromere protein F (CENPF) localization to the centromere, as reported below. MATERIALS AND METHODS All chemicals and culture press were purchased from Sigma (St. Louis, MO, USA) unless stated otherwise. ICR mice were used in this study. All experiments were approved by the Animal Care and Use Committee of Nanjing Medical University or college and were performed in accordance with institutional recommendations. Antibodies Rabbit polyclonal anti-Rab5a (cat no. ab18211), rabbit polyclonal anti–actin (ab5441), and rabbit polyclonal anti-CENPF (ab5) antibodies were purchased from Abcam (Cambridge, MA, USA); mouse monoclonal anti–tubulin-FITC antibody was purchased from Sigma (76074); human being anti-centromere CREST antibody (09C-CS1058) was purchased from Fitzgerald Industries International (Concord, MA, USA); mouse monoclonal anti-NuMA antibody (610562) was purchased from BD Transduction Laboratories (Lexington, KY, USA); goat polyclonal anti-lamin A/C antibody (SC-6215) was from Santa Cruz Biotechnology (San Jose, CA, USA); FITC-conjugated goat anti-rabbit IgG, FITC-conjugated donkey anti-goat IgG, and TRITC-conjugated goat anti-rabbit IgG were purchased from Thermo Fisher Scientific (Rockford, IL, USA); and Cy5-conjugated goat anti-human IgG and Cy5-conjugated goat anti-rabbit IgG were purchased from Jackson ImmunoResearch Laboratory (Western Grove, PA, USA). Oocyte collection and tradition Six- to 8-wk-old female mice were utilized for oocyte collection. To collect fully cultivated germinal vesicle (GV) oocytes, mice were superovulated with 5 IU pregnant mare serum gonadotropin (PMSG) by intraperitoneal injection, and 48 h later on, cumulus-enclosed oocytes were acquired by manual rupturing of antral ovarian follicles. Cumulus cells were eliminated Ispinesib (SB-715992) by repeatedly pipetting. For maturation, GV oocytes were cultured in M2 medium under mineral oil at 37C inside a 5% CO2 incubator. Morpholino (MO) knockdown Microinjection of MO, having a Narishige microinjector (Narishige Group, Tokyo, Japan), was used to knock down Rab5a and CENPF in mouse oocytes. Rab5a-MO 5-TTGTTGCTCCTCGATTAGCCATGTC-3 and CENPF-MO 5-GGCCCAGCTCATCTTGTTTTATTTT-3 (Gene Tools, Philomath, Ispinesib (SB-715992) OR, USA) focusing on initiation of translation were diluted with water to give a stock concentration of 1 1 mM, and then a 2.5 pl MO solution was injected into oocytes. A MO standard control was injected as control. After injections, oocytes were arrested in the GV stage in M2 medium supplemented Ispinesib (SB-715992) with 2.5 CD163L1 M milrinone for 20 h to facilitate knockdown of mRNA translation, then washed 3 times in milrinone-free M2 medium, and cultured for different times. European blotting A pool of 100 oocytes was lysed in Laemmli sample buffer comprising protease inhibitor and then subjected to 10% SDS-PAGE. The separated proteins were transferred to a PVDF membrane. Membranes were clogged in TBS comprising 0.1% Tween 20 and 5% low-fat dry milk for 1 h and then incubated with primary antibodies as follows: rabbit anti-Rab5a antibody (1:1000) or rabbit anti-CENPF antibody (1:1500). After multiple washes in TBS comprising 0.1% Tween 20 and incubation with horseradish peroxidase-conjugated secondary antibodies, the protein bands were visualized using an ECL In addition European Blotting Detection System (GE Healthcare, Piscataway, NJ, USA). The membrane was then washed.